【新智元导读】8月21日,腾讯云正式对外宣布成功创造了128卡训练ImageNet业界新记录,以2分31秒的成绩一举刷新了这个领域的世界记录。 刷新世界纪录:2分31秒完成 ImageNet训练 基于腾讯公有云25Gbps的VPC网络环境,使用128块V100,借助Light大规模分布式多机多卡训练 ...
性能显著提升,参数量却没有明显增加。最新的 Split-Attention Networks 继承了 ResNet 简洁通用的特性。 2015 年,ResNet 横空出世,一举斩获 CVPR 2016 最佳论文奖,而且在 Imagenet 比赛的三个任务以及 COCO 比赛的检测和分割任务上都获得了第一名。四年过去,这一论文的 ...
在「x 分钟训练 ImageNet」问题上,人们通常采用的方法是增加批大小并加大算力。随着 ResNet-50 在 ImageNet 上的训练时间已用秒计,人们开始转向其他研究方向。来自东京工业大学的研究者近日采用二阶方法,实现了和优化 SGD 类似的准确率和效率。 随着神经网络 ...
架构变化、训练方法和扩展策略是影响模型性能的不可或缺的重要因素,而当前的研究只侧重架构的变化。谷歌大脑和 UC 伯克利的一项最新研究重新审视了 ResNet 架构,发现对于提升模型性能而言,改进训练和扩展策略或许比架构变化更重要。他们提出了 ResNet ...
在本文,我们ResNet进行了回顾。通过学习残差表征函数而不是直接学习目标表征,ResNet可以拥有多达152层的非常深的网络。 ResNet引入了跳过连接(或快捷方式连接)以适应从前一层到下一层的输入,而无需修改输入。跳过连接可以实现更深入的网络,最终ResNet ...
原标题:120万美元机器24分钟训练ImageNet,UC Berkeley展示全新并行处理方法 选自UC Berkeley 机器之心编译 参与:李泽南、蒋思源 今年 6 月,Facebook 实现 1 小时训练 ImageNet 的成绩之后,通过增加批量大小以加快并行训练速度的方式引发了人们的关注。最近 UC Berkeley 的 ...